Finite orbit width effect on the neoclassical toroidal viscosity in the superbanana-plateau regime

Seikichi MATSUOKA

Japan Atomic Energy Agency

Collaborators: Yasuhiro IDOMURA (JAEA), Shinsuke SATAKE (NIFS)

Acknowledgement

This work is supported in part by the MEXT, Grant for Post-K priority issue No.6: Development of Innovative Clean Energy, and in part by NIFS Collaborative Research Program NIFS16KNST103

7th APTWG@Nagoya Univ., June 7th, 2017

1. Introduction

- 2. Numerical verification of NTV by global kinetic simulations
- 3. Finite orbit width effect on NTV
- 4. Another application of GT5D for 3D geometry
- 5. Summary

Background & motivation - 3D effect on tokamak

3D effect is a key issue for plasma confinement in tokamaks.

- Small resonant 3D perturbation affects on tokamak plasmas.
 - stability: ELM mitigation
 - transport: Neoclassical Toroidal Viscosity (NTV), Rotation

Discrepancy of NTV prediction:

ν_{b}^{*} -dependency

- [Shaing ,PPCF2009] v_b*-independent NTV (Superbanana-plateau theory)
- [Satake, PRL2011] v_b^* -dependency by FORTEC-3D code.

Purpose

Clarify the cause of the discrepancy by using two different types of global kinetic simulations. ν_{b}^{*} -dependency of NTV from SBP theory and FORTEC-3D. (Satake, PRL2011)

Superbanana-plateau theory for NTV

- Local, bounce-averaged drift-kinetic equation.
- Toroidal precession, $\langle \omega_B \rangle_{bc} = 0$, gives the resonant condition.
- Magnetic shear shifts the resonance κ^2 towards the boundary [Shaing, JPP2015].
- Non-axisymmetric part of δB is only retained through the perturbed radial drift.
- Independent of collisionality.

Schematic view of SBP resonance

1. Introduction

- 2. Numerical verification of NTV by global kinetic simulations
- 3. Finite orbit width effect on NTV
- 4. Another application of GT5D for 3D geometry
- 5. Summary

Target plasma profiles & numerical tools

Circular tokamak with δB

- $B_{ax} = 1.91 \text{ T}$
- $a_0=0.47\ m$ / $R_{ax}=2.35\ m$
- $1/\rho^* = 150$
- $q = 0.854 + 2.184 (r/a_0)^2$ (positive shear)
- $E_r = 0$ (fixed)
- $v_b^* \approx 0.12$ (base case) In the superbanana-plateau regime scan: $v_b^* \times 0.01$, 0.1, 1, 5, 10, 50
- $\delta B/B_{ax} = 0.5 \%$ with m/n = 7/5
- resonant surface with q = 1.4 at $r/a_0 \approx 0.5$.

Global kinetic code

- GT5D; Full-f Eulerian code for gyrokinetic simulations
- FORTEC-3D; δf Monte Carlo (particle) code for drift-kinetic (neoclassical) simulations

Radial profile of perturbation and v_{b}^{*} .

v_{b}^{*} -dependency of NTV arises in global sims.

NTV of global kinetic simulations reproduce similar v_{b}^{*} -dependency over the wide ranges of collisionalities.

No resonant structure in global simulations.

Velocity space structures of non-axisymmetric part of *f* are successfully verified.

- No resonant structures along the boundary (barely-trapped) region.
- Rather complicated structures are observed.
- Especially, a clear large scale structure appear in trapped region.
- Complicated structures survive for smaller $\delta B \approx 0.05 \%$ –> determined by unperturbed orbit.

1. Introduction

2. Numerical verification of NTV by global kinetic simulations

3. Finite orbit width effect on NTV

4. Another application of GT5D for 3D geometry

5. Summary

Absence of resonance results from the large finite orbit width of barely-trapped (resonant) particles.

- Banana width $\Delta_b/a_0 \approx 0.17$ for $v/v_{th} \approx \sqrt{2}$; variation of $q \approx 1.2$ 1.59.
- Barely-trapped particle feel the perturbation only for a fraction of the bounce period.
 - Perturbation becomes less effective.
- Bounce-average of dr/dt significantly decreases as m increases.

FOW generates finite-*l* mode, causes phase-mixing.

10⁻¹

10⁻³

10⁻²

 10^{-1}

 $v_{\rm b}$

by phase mixing

 10^{0}

10¹

- $\left| \left(\frac{1}{2} \right) \right|_{\mathcal{D}}$
- Makes NTV smaller in lower v_b^* .

1. Introduction

- 2. Numerical verification of NTV by global kinetic simulations
- 3. Finite orbit width effect on NTV
- 4. Another application of GT5D for 3D geometry

5. Summary

Full-f gyrokinetic simulations for 3D field

GT5D+VMEC

- Solves gyrokinetic equation.
- Global full-f model.
- VMEC equilibrium for 3D field.
- Eulerian approach.
 - · Conservative Morinishi scheme.
- Radial electric field solver.
 - Ambipolar condition of neoclassical transport.
- Neoclassical benchmark has been initiated.

Benchmark case parameters

- LHD inward shifted configuration with $R_{ax} = 3.6$ m and $B_{ax} = 3.0$ T.
- $a_0 = 0.63$ m.
- $T_{i,ax} = 0.91 \text{ keV}$, and $n_{e,ax} = 3.5 \times 10^{18} \text{ m}^{-3}$.

(Preliminary) NC Benchmarks w/ and w/o Er

 NC particle flux of GT5D+VMEC shows fairly good agreement with

-
$$1/\nu$$
-regime; $\nu_{b}^{*} \approx 0.15 @ \rho \approx 0.51$.

(bottom) E_r is determined according to the ambipolar condition of Γ .

FORTEC-3D

Summary

FOW effect on NTV in Superbanana-Plateau regime

- NTV of GT5D well reproduces the ν -dependency of NTV and velocity space structure of FORTEC-3D simulations.
- Large banana width of the unperturbed orbit plays a key role in NTV physics.
 - 1. Radial drift caused by perturbation significantly decreases. —> Smaller NTV.
 - 2. Finite-I mode along the bounce motion causes the phase mixing $\rightarrow \nu$ -dependency.

GT5D+VMEC

- Global full-f gyrokinetic simulation code for 3D geometries.
- Equilibrium from VMEC is incorporated into GT5D via the newly developed interface.
- First neoclassical benchmarks w/ and w/o Er show good agreements with FORTEC-3D.