7th APTWG International Conference Nagoya University 5~8 June 2017

Interaction of vortices and waves in stratified turbulence

Yoshifumi Kimura

Graduate School of Mathematics, Nagoya University

joint work with Jackson R. Herring (NCAR)

Similarity between MHD and stratified turbulence

MHD : velocity field is coupled with *magnetic field* by the Lorentz force

stratified : velocity field is coupled with *density* by buoyancy

characteristic waves exist in turbulence

MHD Alfvén waves

Vortices in stably stratified turbulence

Zig-Zag instability:

Three-dimensional stability of a vertical columnar vortex pair in a stratified fluid. Billant, P. & Chomaz, J.-M. *J. Fluid Mech.* **419**, 65–91(2000).

Produced from "large" scales, (starting from vertical columnar vortices)

Scattered pancakes: Diffusion in stably stratified turbulence. Kimura, Y. & Herring, J.R. *J. Fluid Mech.* **328**, 253–269(1996).

Produced from "small" scales (starting from random isotropic vortices)

Q: Are they really different things?

Navier-Stokes equation with the Boussinesq approximation

$$\begin{aligned} \frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} &= -\nabla p + \nu \nabla^2 \mathbf{u} + \theta \hat{\mathbf{z}} + \mathbf{f} \\ \frac{\partial \theta}{\partial t} + (\mathbf{u} \cdot \nabla) \theta &= \kappa \nabla^2 \theta - N^2 w \\ \nabla \cdot \mathbf{u} &= 0 \end{aligned}$$

 $\mathbf{u} = (u, v, w)$: velocity

 $\Theta(z) = N^2 z + \theta$

where

$$\Theta^{2} = \frac{g\alpha}{T_{0}} \frac{\partial \overline{T}}{\partial z}$$

f

- : temperature fluctuations
- : Brunt Väisälä frequency
- : External forcing (in fourier space)

Numerical Methods

forced simulations

- 2π -periodic box with $512^3 \sim 2048^3$ grid points ($R_{\lambda} \sim 400$)
- 3rd order time-marching scheme
- Initial energy spectrum : E(k) = 0
- Force horizontal velocity components
- Add red noise to modes within a wave number band $(k_f \sim 4, 10)$
 - Two types of 2D forcing (quasi 2D, pure 2D)

Two types of 2D forcing

Forcing component may differ vertically

Inputting seeds of gravity waves

$$\mathbf{f} = (f(k_x, k_y, 0), g(k_x, k_y, 0), 0)$$

Purely 2-dimensional

Gravity waves are generated by the coupling between velocity and temperature fluctuations

Craya-Herring decomposition

 $\nabla \cdot \mathbf{u} = 0$

incompressibility

 $\mathbf{k} \cdot \tilde{\mathbf{u}} = 0$

 $\tilde{\mathbf{u}}$ is spanned by two independent vectors perpendicular to \mathbf{k}

$$\mathbf{e}_{1}(\mathbf{k}) = \frac{\mathbf{k} \times \hat{\mathbf{z}}}{\|\mathbf{k} \times \hat{\mathbf{z}}\|} = \frac{1}{\sqrt{k_{x}^{2} + k_{y}^{2}}} \begin{pmatrix} k_{y} \\ -k_{x} \\ 0 \end{pmatrix}$$
$$\mathbf{e}_{2}(\mathbf{k}) = \frac{\mathbf{k} \times \mathbf{k} \times \hat{\mathbf{z}}}{\|\mathbf{k} \times \mathbf{k} \times \hat{\mathbf{z}}\|} = \frac{1}{\sqrt{k_{x}^{2} + k_{y}^{2} + k_{z}^{2}}} \sqrt{k_{x}^{2} + k_{y}^{2}} \begin{pmatrix} k_{z}k_{x} \\ k_{z}k_{y} \\ -(k_{x}^{2} + k_{y}^{2}) \end{pmatrix}$$
$$\mathbf{e}_{3}(\mathbf{k}) = \frac{\mathbf{k}}{\|\mathbf{k}\|} = \frac{1}{\sqrt{k_{x}^{2} + k_{y}^{2} + k_{z}^{2}}} \begin{pmatrix} k_{x} \\ k_{y} \\ k_{z} \end{pmatrix}$$

orthnormal coordinates

 $\tilde{\mathbf{u}}(\mathbf{k}) = \phi_1 \mathbf{e}_1(\mathbf{k}) + \phi_2 \mathbf{e}_2(\mathbf{k})$ $\phi_1 = \tilde{\mathbf{u}}(\mathbf{k}) \cdot \mathbf{e}_1(\mathbf{k})$ $= \frac{1}{\sqrt{k_x^2 + k_y^2}} (k_y \tilde{u} - k_x \tilde{v})$ $=\frac{i}{\sqrt{k_x^2+k_y^2}}\tilde{\omega}$ (vortical) $\phi_2 = \tilde{\mathbf{u}}(\mathbf{k}) \cdot \mathbf{e}_2(\mathbf{k})$ $=\frac{\sqrt{k_{x}^{2}+k_{y}^{2}+k_{z}^{2}}}{\sqrt{k_{x}^{2}+k_{y}^{2}}} \tilde{w}$

(wavy)

Growth of Φ_1 and Φ_2 energy

Growth of horizontal energy spectra

- Before stratification is switched, the flow field stays
 2D-like and inverse cascade of energy is observed.
- After stratification is switched and gravity waves are developed, the low wave number energy is reduced.
- In the steady state, the high wave number part shows
 -5/3 spectrum.
- flat spectra in the low wave numbers were reported originally by Herring & Métais(1989) and recently verified by Marino, Mininni, Rosenberg & Pouquet (2014).

Development of temperature fluctuations

average of horizontal energy and vertical gradient of θ in horizontal planes

z-coordintate

10/26

Horizontal kinetic energy and vertical derivative of θ (k_f = 10, N² = 100, t = 76.5087)

Fluct. & total temperature along the white line at x=132

sew-tooth wavy jumps

cliff-ramp structures

Search for the structures relating to the jumps

PDFs of temp. fluctuations and its derivatives

Conditional PDF of enstrophy

• In the region of strong vertical gradient of temp. fluctuations, enstrophy is stronger in the cooler temperature than the warmer.

Model for tilted pancakes

Low-Froude number limit model Riley, Metcalfe, Weissman (1981) $\frac{\partial \vec{u}_{H}}{\partial t} + \vec{u}_{H} \cdot \nabla_{H} \vec{u}_{H}$ $= -\nabla_{H} p + \frac{1}{\text{Re}} (\Delta_{H} + \frac{\partial^{2}}{\partial z^{2}}) \vec{u}_{H}$ $\operatorname{div}_{\mathrm{H}} \vec{u}_{\mathrm{H}} = 0 , \quad w = 0$ linear advection-diffusion eq. (using a special initial condition) Majda, A.J. & Grote M.J. Model dynamics and vertical collapse in decaying strongly stratified flows. *Phys. Fluids* **9** (1997) 2932-2940.

remains similar.

Development of Φ_1 **energy**

19/26

Spectral energy transfer by Kolmogorov

Kolmogorov (homogeneous isotropic) turbulence

$$\Pi(k) = -\int_{0}^{k} \underline{\hat{T}(k)} dk \quad \text{(flux function)}$$

spherical average of energy transfer function

basic idea: constant flux \approx power-law in spectrum \approx inertial range

Energy budget equation

From the equations of the motion in the Fourier expression,

$$(\partial_t + 2\nu k^2) E(\mathbf{k}) = \underline{T(\mathbf{k})} + \underline{B(\mathbf{k})} + \underline{F(\mathbf{k})}$$

$$k^2 = |\mathbf{k}|^2 = k_x^2 + k_y^2 + k_z^2$$
Nonlinear terms Buoyancy terms Forcing terms

$$T(\mathbf{k}) = 2P_{ij}(\mathbf{k}) \operatorname{Im} \left[k_m \tilde{u}_i^*(\mathbf{k}) \left(\tilde{u}_j \otimes \tilde{u}_m \right) (\mathbf{k}) \right]$$
$$B(\mathbf{k}) = 2P_{i3}(\mathbf{k}) \operatorname{Re} \left[\tilde{\theta}(\mathbf{k}) \tilde{u}_i^*(\mathbf{k}) \right]$$
$$F(\mathbf{k}) = 2P_{ij}(\mathbf{k}) \operatorname{Re} \left[\tilde{f}_j(\mathbf{k}) \tilde{u}_i^*(\mathbf{k}) \right]$$
$$(P_{ij} = \delta_{ij} - k_i k_j / |\mathbf{k}|^2: \operatorname{Projection operator}$$

transition of the flux function

22/26

Energy flux functions with different wavenumbers (interaction between Φ_1 and Φ_2)

 Flux functions in terms k₁ and k_z do not go back to 0 in high wave numbers. (Because energy conservation is not hold.)
 Gravity waves (Φ₂) receive energy from Φ₁ in the high wave number region and

contribute for energy dissipation.

Energy flux and spectrum

Energy flux for Φ_1 takes nearly a constant value in the high wave number region.

- Φ_1 energy, Φ_2 energy, potential energy altogether satisfy conservation of energy.
- Corresponding energy spectrum satisfies a certain constant power-law. (Kolmogorov theory).

Problems:

- Φ_1, Φ_2 both tend to be 0 in the region of the high wave numbers
- There is no theoretical reasons for $k^{-5/2}$.

Effects of anisotropy

• k-spectra look like k_z -spectra in particular at high wave numbers. (perhaps because energy is distributed in the polar regions ($k_z >> 1$) due to the layer structures.

• $E(k_z) \sim CN^2k_z^{-3}$ is known as the saturation spectrum and often observed in ocean science. <u>kinetic energy spectrum</u>

Summary

◆ Horizontal layers develop quickly as the wave component grows.

- Rotation decreases the amplitude of waves keeping the growth rate similar.
- Kolmogorov's cascade picture needs to be modified because of the anisotropy.