

Turbulent Particle Transport in Transport Barriers

M. K. Han^{1,2}, Zheng-Xiong Wang¹,^{a)} J. Q. Dong^{2,3}, and H. R. Du¹

¹Dalian University of Technology, Dalian, China ²Southwestern Institute of Physics, Chengdu, China ³Zhejiang University, Hangzhou, China

> June 5-8 2017 Nagoya University, Nagoya, Japan

Outline

Background

- Physical Model and Equation
- > Numerical Results
- Multiple TEMs and ITG modes in transport barriers
- Quasi-linear mixing length estimation
- Quasi-linear particle transport estimation

➤ Summary

Background: Transport Barriers

✓ Transport Barriers

1. Edge Transport Barrier

2. Internal Transport Barrier

Turbulent Particle Transport in Transport Barriers

Background: H-mode, I-mode and L-mode

- \checkmark H-mode : Steep temperature and density gradients in pedestals.
- ✓ I-mode : Steep temperature gradient comparable to H-mode and density gradient comparable to L-mode.
- ✓ L-mode : Medium temperature and density gradients.

Background: Unconventional Structures and Streamer

Conventional ballooning structure

Two-dimensional turbulence intensity in the poloidal plane for nonlinearly weak and strong gradients

Unconventional ballooning structure

H. S. Xie et al POP 2015

H. S. Xie, Y. Xiao and Z. H. Lin PRL 2017

Background: Simulations Agree with the Experimental Results

✓ Agreement between the experimental results and the quasilinear gyrokinetic simulation is qualitatively satisfactory.

HL_2A

A quasi-coherent mode was observed in the transport barrier in edge region of H-mode plasmas in tokamaks as a precursor to ELM crash.

Typical parameters:
$$\eta_i = 0.80, k_{\theta}\rho_s = 0.6, q = 3,$$
 $\hat{s} = 1.6, \eta_e = 0.80, \varepsilon_n = 0.048,$ $\tau = 1.25, \varepsilon = 0.23$ J. Cheng et al PRL 2013W. L. Zhong et al PRL 2013

Physical Model and Equation

- \checkmark The ballooning representation
- ✓ The *s*- α equilibrium model with circular flux surfaces (here $\alpha = 0$)
- \checkmark The electron is adiabatic and the ion is nonadiabatic
- ✓ The non-adiabatic response h is determined by

$$i\frac{v_{//}}{qR}\frac{\partial}{\partial\theta}h_{s} + (\omega - \omega_{Ds})h_{s} = (\omega - \omega_{*sT})J_{0}(\alpha_{s})F_{Ms}\frac{q_{s}n_{0}}{T_{s}}\hat{\phi}(\theta)$$
FLR effect
$$k_{//}v_{//} \qquad \omega_{Di} = 2\tau_{e}^{-1}\varepsilon_{n}(\cos\theta + \hat{s}\theta\sin\theta)\left(\frac{\hat{v}_{\perp}^{2}}{2} + \hat{v}_{//}^{2}\right) \qquad \omega_{*T} = -\tau_{e}^{-1}\omega_{*e}\left[1 + \eta_{i}\left(\hat{v}_{\perp}^{2} + \hat{v}_{//}^{2} - \frac{3}{2}\right)\right]$$
Landau resonance/damping: $\frac{1}{(\omega - \omega_{Di} - k_{//}v_{//})}$

Physical Model and Equation - ITG

The integral eigenmode equation from quasineutrality condition

$$(1+\tau_{e})\hat{\phi}(k) = \int_{-\infty}^{+\infty} \frac{dk'}{\sqrt{2\pi}} K(k,k')\hat{\phi}(k')$$

$$K(k,k') = -i\int_{-\infty}^{0} \omega_{*e} d\tau \frac{\sqrt{2}e^{-i\omega\tau}}{\sqrt{a}(1+a)\sqrt{\lambda}} e^{-\frac{(k-k')^{2}}{4\lambda}} \Gamma_{0}(k_{\perp},k_{\perp}')$$

$$\times \left[\frac{\omega\tau_{e}}{\omega_{*e}} + 1 - \frac{3\eta_{i}}{2} + \frac{2\eta_{i}}{(1+a)} \left(1 - \frac{k_{\perp}^{2} + k_{\parallel}^{2}}{2(1+a)\tau_{e}} + \frac{k_{\perp}k_{\parallel}}{(1+a)\tau_{e}} \frac{I_{1}}{I_{0}}\right) + \frac{\eta_{i}(k-k')^{2}}{4a\lambda}\right]$$

Typical parameters adopted: $\eta_i = 0.80, k_{\theta}\rho_s = 0.6, q = 3,$ $\hat{s} = 1.6, \eta_e = 0.80, \varepsilon_n = 0.048,$ $\tau = 1.25, \varepsilon = 0.23$

♦ Updated HD7 code

- For quasi-linear mixing length estimation
- For quasi-linear turbulent particle flux estimation

Physical Model and Equation - TEM

✓ Neglect the finite Larmor radius effect of trapped electrons

 \checkmark The perturbation of trapped electron density

$$\widetilde{n}_{et} = -\frac{en_e}{T_e} \sqrt{\frac{2\epsilon}{\pi}} \int_0^\infty dt \sqrt{t} e^{-t} \int_0^1 \frac{\omega - \omega_*^e}{\omega - \overline{\omega}_d^e} \cdot \frac{d\kappa^2}{4F(\kappa)}$$
 The perturbation of TE density

$$\times \sum_{j=-\infty}^{+\infty} g(\theta - 2\pi j, \kappa) \int_{-\infty}^{+\infty} d\theta' g(\theta', \kappa) \phi(\theta' - 2\pi j)$$

where,

J. Q. Dong et al POP 1997 H. Du et al POP 2014

Physical Model and Equation – Estimate Transport

✓ For quasi-linear mixing length estimation $\chi_{i} = \frac{\widehat{\gamma}}{\widehat{k}_{r}^{2}} \frac{k_{\theta}\rho_{s}}{\varepsilon_{n}} \left(\frac{c_{s}}{R}\rho_{s}^{2}\right), \quad \widehat{k}_{r}^{2} = k_{\theta}^{2}\rho_{s}^{2}\widehat{s}^{2}\langle\theta^{2}\rangle$

✓ For quasi-linear turbulent particle flux

$$\begin{split} \tilde{n}_{i} &= -\tau_{i}\left(1 - f_{z}\right)\hat{\phi} + \int_{-\infty}^{\infty} dk' H_{i}\left(k, k'\right)\hat{\phi} \qquad \nu_{r} = \frac{E_{\theta}B_{\phi} - E_{\phi}B_{\theta}}{B^{2}} \\ \tilde{n}_{z} &= -\tau_{z}Zf_{z}\hat{\phi} + \int_{-\infty}^{\infty} dk' H_{z}\left(k, k'\right)\hat{\phi} \qquad B_{\phi} \gg B_{\theta}, \quad E_{\theta} \gg E_{\phi} \\ \Gamma_{i} &= \hat{\gamma}\left\langle \hat{n}_{i} \cdot \tilde{\nu}_{r} \right\rangle = \frac{c_{s}}{2n_{0e}}\hat{\gamma}k_{\theta}\rho_{s} \cdot R_{e}\sum_{k}\left\langle \hat{n}_{i} \cdot \left(-i\tilde{\phi}\right)^{*}\right\rangle, \\ \Gamma_{z} &= \hat{\gamma}\left\langle \tilde{n}_{z} \cdot \tilde{\nu}_{r} \right\rangle = \frac{c_{s}}{2n_{0e}}\hat{\gamma}k_{\theta}\rho_{s} \cdot R_{e}\sum_{k}\left\langle \hat{n}_{z} \cdot \left(-i\tilde{\phi}\right)^{*}\right\rangle \end{split}$$

Multiple Eigenfunctions

Nucl. Fusion 57 046019

- At the steep gradients region, multiple eigenfunctions of TEM and ITG modes can be found.
- TEM has a more extended mode structures in ballooning space.

Different Temperature Gradient Effects for ITG and TEM

Ion Temperature Gradient Effect for ITG and TEM

✓ Suppose: $\varepsilon_{ni} = \varepsilon_{ne}$. Other parameters are the same as the typical TB's parameters.

- \checkmark Ion flux of the ITG modes are comparable, but not for the TE-ITG modes.
- ✓ Steep ϵ_{Ti} enlarge the ion inwardly transport of the ITG mode, but decrease the ion outwardly transport of TEM.
- ✓ When the ion temperature gradient is steep enough, ion transport of the TE-ITG modes changed into outwardly

Different Turbulent Transport Estimations

✓ Mixing length estimation of the diffusion coefficient decrease with k_θρ_s.
 ✓ Particle flux estimations of the transport are inwardly and first increase with k_θρ_s increasing and then decrease with k_θρ_s.

Simulations Agree with the Experimental Results

Experimental results from HL-2A

- ✓ Under the typical TB's parameter, when ϵ_{Ti} is steep enough, ion flux of the TEM-ITG is inwardly.
- ✓ Under the typical TB's parameter, the dominant instabilities is TEM and the real frequency is in electron diagmagnetic drift direction.
 - The typical TB's parameters $\eta_i = 0.80, k_{\theta}\rho_s = 0.6, q = 3,$ $\hat{s} = 1.6, \eta_e = 0.80, \varepsilon_n = 0.048,$ $\tau = 1.25, \varepsilon = 0.23$

Simulations Agree with the Experimental Results

Simulation results that the ion flux of the ITG are inwardly and that of ITG +TEM are outwardly. This is similar to the result from results from Tore Supra tokamak

TEM with high modenumber *l* seems not very important.

Turbulent Particle Transport in Transport Barriers

Thank you very much!