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Ø Background 
Ø Physical Model and Equation 

Ø Numerical Results 

•  Multiple TEMs and ITG modes in transport barriers 

•  Quasi-linear mixing length estimation 

•  Quasi-linear particle transport estimation 

Ø Summary 
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Tore	Supra	tokamak		

W.	L.	Zhong	et	al	PRL	2013 

ü Agreement between the experimental 
results and the quasilinear gyrokinetic 
simulation is qualitatively satisfactory.   

ü  A	quasi-coherent	mode	was	observed	in	the	
transport	barrier	in	edge	region	of	H-mode	
plasmas	in	tokamaks	as	a	precursor	to	ELM	crash.	

ü  Typical	parameters:		

J.	Cheng	et	al	PRL	2013 

HL_2A	
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ü  The       equilibrium model with circular flux surfaces (here         ) s−α

ü  The ballooning representation 

Landau resonance/damping： 

ü  The non-adiabatic response      is determined by h
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FLR effect 

ü  The electron is adiabatic and the ion is nonadiabatic 
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The integral eigenmode equation from quasineutrality condition  

Typical parameters adopted: 

²  Updated HD7 code 
•  For quasi-linear mixing length estimation 
•  For quasi-linear turbulent particle flux estimation 
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The	perturbaUon	of	TE	density	
are	Even	Parity 
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ü  For quasi-linear mixing length estimation 

ü  For quasi-linear turbulent particle flux 
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Typical	eigenfuncUons	of	ITG	mode Typical	eigenfuncUons	of	TEM 

ü  At	the	steep	gradients	region,	mulUple	eigenfuncUons	of	TEM	and	
ITG	modes	can	be	found.	

ü  TEM	has	a	more	extended	mode	structures	in	ballooning	space.	

Nucl.	Fusion	57	046019 
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Different Temperature Gradient Effects for ITG and TEM 
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ü  Suppose:		εTi= εTe 
 
ü  εni= εnei= 0.0485

ü  Other parameters 
are the same as 
the typical 
parameters. 

Ø  Growth	rate	of	ITG	modes	are	more	comparable	
than	the	TEMs. 

Ø  TEM’s	unstable	region	is	larger	than	the	ITG	
modes.This	is	agree	with	the	experiment. 

Ø  Ion	flux	of	the	TEMs	increase	with	the	increase	
of	the	temperature	gradient,	but	opposite	for	
the	ITG	modes.  



Turbulent	Par,cle	Transport	in	Transport	Barriers 

Ion Temperature Gradient Effect for ITG and TEM 

13				

ü  Suppose:  εni= εne.Other parameters are the same as the typical TB’s parameters. 
ü  Ion flux of the ITG modes are comparable, but not for the TE-ITG modes. 
ü  Steep εTi enlarge the ion inwardly transport of the ITG mode, but decrease the ion 

outwardly transport of TEM. 
ü  When the ion temperature gradient is steep enough, ion transport of the TE-ITG 

modes changed into outwardly 

Ion	flux	of	the	ITG	modes Ion	flux	of	the	TE-ITG	modes 
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Different Turbulent Transport Estimations 
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Quasi-linear mixing length Quasi-linear particle flux 

ü Mixing	length	esUmaUon	of	the	diffusion	coefficient	decrease	with	kθρs.	
ü  ParUcle	flux	esUmaUons	of	the	transport	are	inwardly	and	first	increase	

with	kθρs  increasing and then decrease with	kθρs .	

ITG 

ITG 
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Experimental	results	from	HL-2A HD7	simulaUon	results	based	on	the	typical	TB’s	
parameters	of	HL-2A 

ü  Under the typical TB’s parameter, when εTi is	
steep	enough,	ion	flux	of	the	TEM-ITG	is	inwardly.  

TEM-ITG 

ü  Under the typical TB’s parameter, the dominant 
instabilities is TEM and the real frequency is in 
electron diagmagnetic drift direction. 

ü  The	typical	TB’s	parameters 
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Ø  Simulation results that the 
ion flux of the ITG are 
inwardly and that of ITG
+TEM are outwardly. This 
is similar to the result 
from results from Tore 
Supra tokamak  

Tore	Supra	experimental	results HD7	simulaUon	results 

TEM TEM Ø  TEM with high mode-
number l seems not very 
important. 
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