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What is a blob?

• Coherent plasma structures observed in edge of confined plasmas,
including tokamaks, stellarators, reverse field pinches, etc...

• Density and temperature monopole propelled cross-field by E× B drifts
generated by electric field dipole

• Aligned to the magnetic field, with small parallel wavenumber,
responsible for a large fraction of the cross-field transport

Most of this talk is devoted to discuss experimental observations, theory,
and simulations of filamentary transport as well as their effect on the
tokamak SOL width
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Why are blobs important? Why do we care?
Inter-ELM SS heat-fluxes depend on filamentary transport

• Must limit steady-state heat-flux ∼ P/A to avoid excessive erosion

• For ITER P ≈ 100MW × (1− frad) sin θ ≈ 1MW , A ≈ 2πRλq results in
P/A ≈ 5MW/m2 with slanted target, partial detachment, λq ≈ 5mm

• Multi-machine scaling [Eich, PRL (2013)] gives λq ∝ B−0.8
ϕ q1.1

95 P0.1R0,
extremely challenging problem for DEMO variants

• Large fraction of cross-field heat-flux (∼ 50%) determined by blobs

• Analogies between blobs and turbulence allows inference about λq
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Why are blobs important? Why do we care?
Peak heat load from Edge Localized Modes (ELMs)

[Boedo, PoP (10), 1670 (2003)] [Ben Ayed, PPCF 51, 035016 (2009)]

• ELM heat deposition results from propagation of field-aligned plasma
filaments similar to blobs
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Why are blobs important? Why do we care?
Possible relation between blob transport and density limit

• Close to density limit, density/energy carried by blob increases,
plasma profiles flatten and develop ”shoulder” [Rudakov et al., NF 45, 1589 (2005)]
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Outline

Objective: Understand the physics of blob filaments and their role in
tokamak edge transport

• Describe experimental observations of structure, propagation

• Obtain a basic physics picture of propagation physics

• Compare observations and simulations of filament dynamics

• Predict the effect of filamentary transport on the SOL width
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Early observation of tokamak edge turbulence
shows coherent density structures

• Measurements show ”spatial patterns of density fluctuations ñ appear
to consist of localized blobs” [Zweben, Phys.Fluids (1984)]

• Even earlier observations from analog age [Zweben, PPCF 49, S1 (2007)]
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Frequency spectra of Isat , Vfl show same qualitative
behavior across several tokamaks/stellarators

• Indication that edge turbulence self-similar, long-time correlations,
plasma size/parameter independent [Carreras, PRL 80, 4438 (1998);Pedrosa, PRL 82, 3261 (1999)]
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Increasing skewness in DIII-D far-SOL indicative of
important role of filamentary transport setting λq

• BES measurements in DIII-D show
increasing deviation from Gaussian
fluctuation PDF

• Region near separatrix has negative
skewness, e.g. ”holes”, indicative that
blobs are created just outside LCFS

• Same effect observed in OH,L,H-mode
plasmas, with blobs contributing ∼ 50%
of radial particle transport

[Boedo et al., PoP 10, 1670 (2003)]
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Individual blobs characterized by a density
monopole with associated potential dipole

• Correlation between Langmuir probe
and GPI diagnostic as function of
vertical probe position in C-Mod

• Density correlation function essentially
Gaussian in space with FWHM ∼ 1cm

• Electric potential phase shifted from
density, slope indicates electric field
across structure (charge separation)

[Grulke, PoP 16, 012306 (2006)]
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Blobs have roundish structure with Lrad ∼ Lpol

roughly proportional to ρs in OH,L,H-mode

• Aggregate analysis Lrad , Lpol of 10k’s of blobs in NSTX OH,L,H-mode
discharges measured using GPI [Zweben, NF 55, 093035 (2015) ; Myra, PoP 23, 112502 (2016)]

• Myra finds best fit for k⊥ρs ≈ 0.17 – result largely agrees with anecdotal
evidence in non-linear simulations of edge turbulence
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C-Mod GPI measurements reveal high correlation
between filaments at midplane and X-point regions

• Average magnitude parallel
wavenumber

〈
k‖
〉
≈ 3–4× 10−2cm−1

• Inferred parallel propagation speed
consistent with vth,e or vA

Play
[Grulke et al., NF 54, 043012 (2014)]
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Summary of observations

• Long history of observations of coherent structures in edge turbulence,
from analog age to state-of-the-art 2D imaging with BES/GPI

• Blobs posed as origin of non-Gaussian PDFs for edge fluctuations
accounting for large fraction of SOL particle and heat transport

• Density monopole with associated potential dipole⇒ propagation
primarily due to E× B drift driven by charge separation

• GPI reveals ”round blobs”, filamentary structure Lrad ∼ Lpol ,
field-line-following structure with very small k‖, L‖ ∼ 1m
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Outline

Objective: Understand the physics of blob filaments and their role in
tokamak edge transport

• Describe experimental observations of structure, propagation

• Obtain a basic physics picture of propagation physics

• Compare observations and simulations of filament dynamics

• Predict the effect of filamentary transport on the SOL width
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Density and charge conservation provide analytical
framework to understand blob propagation

Simplest model describing blob propagation stems from fluid equations
[Krasheninnikov, PLA 283, 368 (2001)]

∂n
∂t
≈ −vE · ∇n (1)

∇ · d
dt

(nmi

eB2∇⊥φ
)

= ∇ · j‖ +∇ · j∗ (2)

• Electric field resulting from polarization propels blob

• Magnetic field curvature ∇ · j∗ drives charge separation
– Analogous to gravity force in Raleigh-Taylor instability

• Flow of parallel currents counteracts the blob motion
– Many closure schemes and physical effects [Krasheninnikov, JPP 74, 679 (2008)]
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Analytical estimates for blob propagation speed
obtained from analogy with linear instability

• Referred to as the blob correspondence principle [Myra, PoP 12, 092511 (2005)]

γ ⇒ vx/δb

k⊥ ⇒ δ−1
b

Ln ⇒ δb

k‖ ⇒ L−1
‖

Linear growth rate ∼ radial velocity vx / size δb

Wavenumber is inverse of the blob size

Effective gravity provided by blob structure

Filament occupies entire field line

• Conceptually simple method to obtain blob velocity
• Estimates in good agreement with experiments and simulations
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Analytical estimates for blob propagation speed
obtained from analogy with linear instability

Using charge conservation together with the blob correspondence
expressions, and estimating φ ∼ vxδbB we obtain

γ
vx

δb
=

2
n0

nb

δb
−

j‖
n0L‖

(3)

In the simplest limit, γ ∼
√

2cs/
√

Rδb and j‖ ≈ en0cs(eφ/Te) is an
approximation to the sheath current, leading to the estimate

v⊥ = v0

√
2δb/δ0

1 +
√

2 (δb/δ0)5/2

nb

n0 + nb
(4)

where v0 = (2L‖ρ2
s /R

3)1/5cs and δ0 = (2L‖ρ2
s /R

3)1/5ρs are reference values
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In more realistic models, blob propagation also
depends on collisionality, magnetic configuration

Curvature drive can be balanced by
• Connected ideal-interchange (Ci):

X-point enhanced inertia
• Sheath-connected (Cs):

Parallel currents to sheath
• Resistive X-point RX :

Parallel currents in divertor region
• Resistive Ballooning RB:

Inertia in midplane region
Λ⇒ collisionality
εx ⇒ local field line length ∼ 1/L‖

[Myra, PoP 13, 112502 (2006)]
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Simple analytical relations for velocity scaling give
bounds for vx as function of the blob size δb

For a diverted tokamak, the Cs and RB regimes give δ2
0/δ

2
b < vx/v0 <

√
δb/δ0

Limited tokamaks follow scaling combining Cs/RB regimes
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Blob velocity distribution in TORPEX stems from
combined Cs and RB scaling

• Small blobs: polarization currents give vx ∼
√
δb

• Large blobs: sheath currents give vx ∼ 1/δ2
b

[Theiler et al., PRL 103, 065001 (2009)]
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Inter-machine comparison shows reasonable
agreement with vx bounds for diverted tokamaks

• Lower bound: plasma inertia bounds vx <
√
δb

• Upper bound: sheath currents bounds vx > 1/δ2
b

[D’Ippolito et al., PoP 18, 060501 (2011)]
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Summary of propagation theory

• ”Blob correspondence principle” gives consistent framework for
evaluating blob velocity scaling using linearized fluid equations

• Velocity scaling depends on ‖ dynamics (e.g. field-line-bending term),
including effect of X-point, collisionality, sheath physics

• Analytical models in good agreement with experimental observations
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Development of simulations, comparison with
experiment crucial to understand SOL transport

• Many detailed comparisons between SOL measurements and theory,
allowing clear interpretation and mostly verifying analytical estimates

• First 2D fluid simulations from late 90’s/early 00’s (ESEL/TOKAM2D/SOLT)
allow quantitative comparisons of filament structure and propagation

• First 3D (gyro)fluid simulations in mid 00’s (GEMR/NLET/TYR, flux tube),
followed by global/flux-driven simulations (BOUT++/GBS/TOKAM3D)

• Massively parallel gyrokinetic simulations of edge turbulence in mid
2010s including neoclassical transport (XGC/GKEYLL)
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SOL plasma dynamics described by fluid equations
• Turbulent modes field-aligned, separate ⊥ and ‖ dynamics
• Motion described by fluid drifts

vi ≈ v‖i + vE×B + v∗i + vpol,i

ve ≈ v‖e + vE×B + v∗e

• Conservation laws for density, vorticity, ion/electron ‖mom., i/e temperature

∂n
∂t

=− ρ−1
?

B
{φ,n}+

2
B

[
nĈ(Te) + TeĈ(n)− nĈ(φ)

]
−∇ ·

(
nv‖e

)
+ S

∂Ω

∂t
=− ρ−1

?

B
∇ · ({φ, ω})−∇ ·

[
v‖i∇‖ω

]
+

B2

n
∇‖j‖ + 2BĈ(p) +

B
3n

C(Gi)

∂U‖e
∂t

=− ρ−1
?

B
{φ, v‖e} − v‖e∇‖v‖e +

mi

me

[
ν j‖/n +∇‖φ−

∇‖pe

n
− 0.71∇‖Te −

2
3n
∇‖Ge

]
∂v‖i
∂t

=...,
∂Te

∂t
= ...,

∂Ti

∂t
= ...

+ BCs consistent with kinetic theory applied at magnetic pre-sheath entrance
[Loizu, PoP (2012)]
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Start with inner wall limited geom. (ITER start-up)
It contains the main ingredients of more complicated configurations

Toroidal limiter 
(inner-wall limited)

Plasma outflowing 
from closed field 

line region into SOL

LCFS

Simulation of Alcator C-Mod 
inner-wall limited discharge

Simulation cost: 0.5 million CPU hours
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Pressure gradient driven turbulence...
Typical poloidal eddy size 1cm, kθ ≈ 0.1ρ−1

s ∼ 10cm−1
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Gaussian PDFs in near SOL, intermittency in far SOL...
Transition between diffusive/convective transport
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Power balance→ exponentially decaying profiles...
Allows us to understand transport processes
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High-res diagnostics allow detailed comparison of
plasma and fluctuation profiles with simulations

• Array of 3 MLP allowing
simultaneous profile
measurement of Vfl , ne, Te

• Array of 10x9 GPI views
for turbulence
characterization

• MLP vs GPI vs simulation
comparison
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High-res diagnostics allow detailed comparison of
plasma and fluctuation profiles with simulations
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• Time averaged profiles in simulations reproduce steep profile gradient,
”narrow feature” no adjustable parameters [Halpern, PoP (2017, under review)]

• Found very similar profile gradients, although feature strength reduced
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Profile steepening correlated to E× B shear layer
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• High-resolution potential profiles allow evaluation of γE×B, exceeds
ideal ballooning growthrate γb ∼ cs/

√
RLp

• Filament phase velocity shifts at LCFS due to Er changing sign

33 F.D. Halpern – APTWG – 5 Jun 2017



MLP and GPI measurements show large fluctuations
around LCFS where plasma profiles are steep
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• Thus lending credibility to theory that filaments driving transport even in
near-SOL where profiles are steep [Halpern, NF (2017)]

• Skewness lowest near LCFS, increases with radius
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Simulations able to reproduce GPI measured
filament correlation length, ellipticity
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• Noticeably, ellipticity roughly constant, not consistent with mesoscale
argument kr ∼

√
ky/Lp for mixing length
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Summary of simulation/experiment comparison

• State-of-the-art simulations can reproduce many features observed in
filamentary transport quantitatively

• Filamentary structure sometimes matched essentially within
experimental error bars

• Fluid simulations of plasma dynamics show two-scale decay length
similar to what is observed in experiment
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Simulations containing open/closed magnetic field
lines are used to study narrow-heat flux feature

Play
Density

Play
Ion parallel velocity

• Sim. parameters: q = 4, ν = 0.01, ρ−1
? = 500 (∼ 1/4 C-Mod @ 4T)

• Physical model: → τ = 0, Boussinesq, electrostatic, no neutrals
• Profiles from power balance, sheared flows, blob formation, etc...
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Simulations of generic IWL plasmas show two-scale
profile with narrow heat-flux feature
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• Strong Er shear due to near-SOL φ and Te profiles decoupling

• Largely consistent with C-Mod / TCV probe measurements
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Magnitude of flow shear defines 3 distinct regions
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• Edge region: drift-resistive-inertial BMs
”no man’s land”
[Drake/Holland/Naulin/Rogers/Scott/Zeiler]

• Near SOL: interaction between
turbulence and sheath currents
[Halpern, NF (2017)]

• Far SOL: RB-like behavior, saturation
likely due to profile modification
[Halpern, NF/PoP/PPCF (2013-16)], Myra/D’Ippolito/Russell
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Vorticity (charge) balance again gives simplified
model to interpret filament velocity
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• Analogous to blob velocity scalings
– Divergent cross-field currents

compensated through
∫
< ∇ · j‖ >t,ϕ dθ

• Diamagnetic currents important in far
SOL⇒ consistent with blob transport

• Balance between ∇ · jpol and ∇ · j‖
important within the narrow feature
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Main result: connection length L‖ ∝ q regulates
effective vE×B,r across near-SOL

• Starting from simplified vorticity balance equation

1
B2

∂

∂r

(
Ω̃
∂φ̃

∂θ

)
≈ ρ?

cs

ρ2
s

(ΛTe − φ)

L‖B

we find that the saturation level is independent of local γlin:

(
ṽE×B,r

)2
=

(
kθφ̃
B

)2

≈ ρ?
cs

ρ2
s

kθ
krk2
⊥

(ΛTe − φ)

L‖B
.

• Simulation scan reveals ΛTe − φ ≈ 2, assume to be ∼ constant
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Main result: Narrow feature gradient length λq

constrained by correlation length Lrad

• Perpendicular turbulent flux Γ⊥ ≈ p̃ṽE×B assuming p̃ ∼ p0/(krLp)

• Balance ∇⊥ · Γ⊥ against sheath loss term ∇‖ · Γ‖ ∼ p0cs/L‖ ≈ p0cs/(qR)

λq

ρs
= Lq =

Lrad

2π

(
qa

ρ?

)1/4

• Simulation parameters:
qa = 3–16, ŝ = 1.5, mi/me = 200–800,
ρ−1
? = 250–1000, νSp = 10−2–1

• Most of λq variation stems from qa ∼ I−1
p ,

compatible with Eich/Goldston scalings Lq [ρs0] (sims.)
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Comparison between theory estimates and TCV LP
data shows good agreement for Ip scan discharges

• Model matches variation of measured
λq even when narrow feature is weak

• Variation of λq ∼ I−1
p captured, likely due

to BM turbulence with Lrad ∼ qa ∼ I−1
p

• BM turbulence explains ρpol scaling
sometimes attributed to NC effects
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Summary and Conclusions

• Experimental observations at the edge of essentially all fusion devices
remark importance of filamentary transport

• Fluid equations give framework to study filament dynamics
X Charge conservation equation used to deduce blob motion

X Analogy with linear perturbations allow simple evaluation of blob motion

X Blob size, velocity, dependence on geometry, collisionality agree
reasonably well with simulations / experimental data

• Flux-driven turbulence simulations provide basic physics picture of
narrow heat-flux feature formation

X Transition between edge and SOL drives strongly sheared Er

X ∇ · j = 0 shows link between sheath currents and sheared ⊥ currents

X Heat flux decay width λq ∼ Lrad in agreement with IWL experiments
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For further reference...

• S.I. Krasheninnikov et al., J. Plasma. Phys 74, 679 (2008):
Review of theoretical aspects of blobs, including impact of X-point

geometry, collisionality, plasma β

• D.A. D’Ippolito et al., Phys. Plasmas 18, 060501 (2011):
Extensive review of experimental observations, summary of theory

and simulation of filamentary transport (300+ references)

• S.J. Zweben et al., Plasma Phys. Control. Fusion 58, 044007 (2016):
Characterization of blob structure and propagation dynamics in

NSTX using gas-puff imaging of edge turbulence
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Extra slides
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Far-SOL width interpreted with Q-L theory
Variation of λq w.r.t. plasma parameters in ITPA ”main SOL” database
captured by Q-L theory [Halpern et. al. PPCF (2016), Horacek et al. PPCF (2016)]
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Currents at TCV limiter with wall mounted LPs [Nespoli, EPS (2015)]

Since jlim ∼ φ− ΛTe, this is indicative of sheared flows within the narrow
feature
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GBS verified using manufactured solutions method

• General and rigorous verification process carried out for GBS [Riva, PoP (2014)]
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• GBS converges to manufactured analytical solution with ||ε|| ∝ ∆x−2
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Evidence of flow shear effects in correlation length,
autocorrelation time

• Decrease in radial correlation length (modest), autocorrelation time
(significant) around LCFS...
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• Blobs are generated around LCFS and maintain shape and coherence
as they propagate outwards (e.g. long τauto in far SOL)
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Phase between δφ,δne shows transition from drift to
interchange

Plasma edge Near SOL Far SOL

• Edge and near-SOL appear to be adiabatic (drift-like), mixed
w/interchange

• Relative phase changes to interchange-like just outside narrow feature
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Near SOL width ∼ proportional to safety factor

• Narrow heat-flux feature weakens with increasing connection length
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(For simplicity, < ncsTe >θ,ϕ,t averaged radial profiles)
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E× B shear rate weakens at high q

• Electrostatic potential has much gentler slope around LCFS

• For q = 16 case, weaker ωE×B combined with higher linear drive at low
wavenumber due to parallel dynamics
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Limited vs. diverted SOL ”more similar than different”

[LaBombard, APS (2014)]

C-Mod λq ∼ I−1
p in limited (narrow feature) or diverted configuration
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Drift-Heuristic model fits IWL near-SOL data [Goldston, JNM (2015)]

• Predicts λq ≈ (a/R)ρp

• Balance between sonic
(Pfirsch-Schluter) parallel flows,
particle drifts carrying plasma
across LCFS...

• Developed for inter-ELM
heat-flux decay length [Eich, PRL

(2011)]
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Turbulence-based scalings (for H-mode) yield results
similar to Eich scaling / Goldston model [Myra, PoP (2015)]

• Black long-dash line: Eich’s fit / Gold dashed line: Goldston’s HD
(simplified)

• Blue line: Interchange instability, Barrier, Wave-breaking, Distributed
(I-BWD)

• Plum line: Flow instability, Barrier, Wave-breaking, Distributed (F-BWD)
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For ballooning turbulence, Lq ∼ q ∼ 1/Bθ

• Assume ballooning type turbulence, estimate πL−1
rad = kr ≈ kθ ≈ kb

• For resistive ballooning modes (ν > 0.01), kb ∝ q−1ν−1/2γ
−1/2
b implies

Lq ∝ qρ−2/5
? ν−2/5

• For inertial ballooning modes (ν < 0.01), kb ∝ q−1γb
√

mi/me implies

Lq ∝ q5/6ρ
−1/2
?

(HD scaling (simplified): Lq ≈ q)
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